GEOGRAPHIC ATROPHY: Patient Identification and Clinical Investigations

Once vision is impacted by geographic atrophy (GA), change is irreversible. Early identification and ongoing monitoring may help to minimise the impact of the disease.^{1,2}

Clinical Investigations in GA

Retinal Imaging to Identify GA

Optical Coherence Tomography (OCT) is helpful in identifying biomarkers of GA³

- OCT signs associated with GA include⁴:
 - Zone(s) of attenuation or disruption of the retinal pigment epithelium
 - Presence of choroidal hypertransmission
 - Evidence of overlying photoreceptor degeneration

Fundus Autofluorescence (FAF) may be used to assess lesion size and monitor disease progression^{3,5}

- FAF signs associated with GA include^{6,7}:
 - Areas of hypoautofluorescence with sharply demarcated borders
 - Patterns of hyperautofluorescence surrounding atrophic lesions such as focal, patchy, banded, diffuse, or diffuse-trickling

Colour Fundus Photography (CFP) may be used to establish a baseline of the disease and monitor progression³

- CFP signs associated with GA include^{5,6,8}:
 - Drusen, as well as depigmentation and hyperpigmentation of areas of the fundus
 - Hypopigmented GA lesions with sharply demarcated areas and increased choroidal vessel visibility

Functional Visual Assessments

Visual acuity alone might not provide a complete assessment of a patient's visual function. A decline in visual function can lead to a decline in quality of life.^{5,9-11} Consider asking your patient about:

- Difficulty in performing daily activities (reading, driving, hobbies, etc.)^{9,11,12}
- Difficulty with low-light vision, night vision, or driving in low-light conditions^{6,13}
- Decreased contrast sensitivity¹³
- Decreased reading speed¹³

Lesion Characteristics That May Be Associated With Faster Progression GA is a heterogeneous disease, and factors of its presentation may be associated with a faster progression rate.⁶ These factors can include:

- Non-foveal lesions⁶
- Multifocal lesions⁶
- Bilateral disease¹⁴

Early detection of geographic atrophy may help to minimise the impact on vision²

Visit SEEGADIFFERENTLY.CO.UK

Scan the QR code to learn more on diagnosing, referring and managing geographic atrophy, and to access helpful tools and resources

References:

Sacconi R, Corbelli E, Querques L, et al. A Review of Current and Future Management of Geographic Atrophy. Ophthalmol Ther. 2017;6(1):69–77.
Regillo CD, Nijm LM, Shechtman DL, et al. Considerations for the Identification and Management of Geographic Atrophy: Recommendations from an Expert Panel. (Iin Ophthalmol. 2024;18:325-335.
Holz FG, Sadda SR, Staurenghi G, et al. Imaging protocols in clinical studies in advanced age-related macular degeneration: recommendations from Classification of Atrophy Consensus Meetings. Ophthalmology. 2017;124(4):464-478.
Guymer RH, Rosenfeld PJ, Curcio CA, et al. Incomplete retinal pigment epithelial and outer retinal atrophy in age-related macular degeneration: classification of atrophy meeting report 4. Ophthalmology. 2020;127(3):394-409.
Sadda SR, Chakravarthy U, Birch DG, et al. Clinical endpoints for the study of geographic atrophy secondary to age-related macular degeneration. Retina. 2016;36(10):1806-1822.
Fleckenstein M, Mitchell P, Freund KB, et al. The progression of geographic atrophy secondary to age-related macular degeneration. Netlina. 2016;36(10):1806-1822.
Fleckenstein M, Mitchell P, Freund KB, et al. The progression of geographic atrophy secondary to age-related macular degeneration. Netlina. 2016;36(10):1806-1822.
Fleckenstein M, Mitchell P, Freund KB, et al. The progression of geographic atrophy secondary to age-related macular degeneration. Invest Ophthalmol Vis Sci. 2018;59(4):AMD48-AMD64.
Gartton J, Barnes S, Haywood A. Patient perspectives in geographic atrophy is an ethnographic study. Ophthalmol Ther. 2019;8(1):115-124.
Sing RP, Patel SS, Nielsen JS, Schmier JK, Rajput Y. Patient-, caregiver-, and eye care professional-reported burden of geographic atrophy secondary to age-related macular degeneration. Am J Ophthalmo Clin Trials. 2019;2(1):1-6.
Sunness JS, Rubin GS, Applegate CA, et al. Visual function abnormalitie

